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Bragg Diffraction from Curved Surfaces* 
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Hamilton's equations for secondary extinction are considered in the light of Riemann's integration of 
the hyperbolic differential equation. It is shown that Green's function for diffraction from a crystal in 
the Bragg geometry is determined by an integral equation. The equation is valid for an arbitrarily 
shaped crystal boundary curve as long as the boundary does not become tangent to the incident or 
diffracted beam directions. 
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Introduction 

Werner & Arrott (1965), and later Werner, Arrott, 
King & Kendrick (1966) have considered the propaga- 
tion of Bragg diffracted neutrons in mosaic crystals 
bounded by plane surfaces. The starting point of these 
calculations is the coupled differential equations of 
Hamilton (1957) which, in turn, are generalizations 
of the one-dimensional equations describing secondary 
extinction in a uniformly illuminated infinite slab 
(Zachariasen, 1945; Bacon & Lowde, 1948). In their 
first paper, Werner & Arrott reformulated Hamilton's 
equations in integral form and calculated the forward 
and diffracted currents under a large slab with a plane 
boundary for an incident neutron beam of infinitesimal 
width by explicit consideration of the multiple scat- 
tering formulation of the theory. The re-emerging 
diffracted current density along the surface constitutes 
a Green function for this geometry. 

* This work was supported by the U. S. Atomic Energy 
Commission. 
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Fig. 1. Geometry for the Bragg Green function. A neutron is 
incident at point P on the crystal surface bounded by the 
curve F. We are considering the response arising from this 
unit source as the diffracted current emerging from the 
surface (in the y direction) at some other point on the surface 
(Xo, yo). 

The purpose of this paper is to show that even 
though an explicit expression for the Bragg Green 
function is no longer available when the surface be- 
comes of arbitrary shape, this function is still deter- 
mined through an integral equation for a class of 
arbitrarily shaped surfaces. 

Green's function for the Bragg case 

The problem we wish to solve is illustrated in Fig. 1. 
A neutron beam of singularity is incident at point 
P and we wish to determine the diffracted current 
density, Ua(x,y), that re-emerges at the point Q located 
on the boundary curve F. The coordinates of the point 
Q on the crystal surface are (xo,yo) in a non-orthogonal 
(Bragg) coordinate system, x and y are taken along the 
incident and diffracted current directions respectively. 
Hamilton's equations for the forward and diffracted 
neutron current densities U~ and Ua are 

c~U~ 
- ( ~ + ~ ) u ~ + / 3 u d  

Ox 

o u .  
3y - - ( f l  + lu)Ue+ flU, (1) 

where fl is the reciprocal mean free path for Bragg 
scattering, while ~ is the reciprocal mean free path for 
all other processes that can occur which cause neutrons 
to become unavailable for further Bragg scattering. If 
we set 

U,=exp [ - ( f l + / t )  (x+y)]u,(x,y) 
and 

Ua=exp [ - ( f l + p )  (x+y)]ua(x,y) 

and substitute in equation (1) we obtain 

gut 
-flua 8x 

and 

~u: -- flu ~ . 
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We will refer to ui and ud as the reduced current den- 
sities. 

Both u~ and un satisfy the equation 

~2 u 

cgxOy 
- -  = / ~ u .  (2) 

Equation (2) is a hyperbolic, self-adjoint equation in 
normal form. Characteristic curves for this equation 
in the xy plane are the lines x = constant o ry  = constant. 

Riemann's integration of the hyperbolic equation is 
treated by Sommerfeld (1964) and may be summarized 
for the particular case of equation (2) with the help of 
Fig. 2. Note that the following general considerations 
regarding the integration of equation (2) take place in 
an abstract two-dimensional xy space within which x 
and y are plotted along orthogonal axes as shown in 
Fig. 2. We assume that u, 3u/~x, and Ou/3y are given on 
the curve F, which does not become tangent to a 
characteristic. Then, with the help of the characteristic 
function v(x,y), defined below, the value of u at some 
point R off the curve F is shown by Sommerfeld to be 
given by the expression 

uR= I {X cos (n,x)+ Y cos (n,y)}ds 
F 

+½{(~u),+(~u)Q} (3) 

where, in the particular case of equation (2) 

c3u c~v 

That is, the modified Bessel function solution turns 
over into an ordinary Bessel function for the case at 
hand. To find the neutron Green function, we will 
choose u in equation (3) to be u,. The reduced current 
density u, generated by the incident-beam singularity 
at point P has the value zero at point P. This is be- 
cause the incident-beam singularity moving along the 
x direction does not contribute directly to the reduced 
current densities u, and ud within the material. Hence, 
we can take u, = 0 everywhere on the curve F so that 
Riemann's solution (3) is simplified to 

ul(Xo, O) = Ir {X cos (n, x) + Y cos (n, y) }ds 

where we have set the y coordinate of the point R in 
Figs. 1 and 2 equal to zero without loss in generality. 
From u~ = 0 on F we have 

Out c~u~ dx 
0y 3x dy 

along F. Furthermore, Oui/Ox=flud, so that (3) reduces 
further to 

ui(xo, O)=fl l~° vu~dx (5) 

where v and ud are considered as functions of x alone 
along the crystal boundary curve F, which we imagine 
given by y =f(x) .  We can make an independent evalua- 
tion of u~(xo, 0) by noting that along the incident direc- 
tion, U~ must satisfy the equation 

dU, 
- ( f l+p )U,+f l  2 exp [ - ( f l + p ) x ]  

dx 

The characteristic function v(x,y) has the following 
properties: 

1. v satisfies (2) in the region S. 
2. v=  1 at the point R with coordinates x0,Y0. 
3. 3v/Oy= 0 on the characteristic x =  xo. 
4. Ov/Ox= 0 on the characteristic y =Y0. 

In equation (3), the integration along the curve F is in 
the sense from Q down to P, while n is the outward 
normal from the region S in Fig. 2. From the modified 
Bessel function solution to (2) given by Werner, Arrott, 
King & Kendrick (1966), it is not difficult to verify 
that the characteristic function appropriate in the case 
of equation (2) is 

v(x, y) = I0[2fll/~-- x0) (Y-- Yo)]. 

We note, however, since x<xo, Y>Yo in S, that the 
argument of the modified Bessel function is imaginary 
so that v(x,y) should be rewritten as 

v(x,y)=4[2~l/(Xo-X) (y-y~)]. (4) 

F / ~  (Xo, yo) 

}/ X = Xo 
s 

= yo (Xo, yo) 
P R 

Fig. 2. General diagram for a hyperbolic boundary value 
problem of the first kind (Sommerfeld, 1964). u, 3u/Sx, Ou/3y 
are given on the curve F while u satisfies the equation 
82u/(OxOy)=fl~u for the case considered here. Riemann's 
integration gives the value of u at the point R with the aid 
of the characteristic function v(x,y). 
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with U~(0,0)=0. The first term in this equation is 
obvious, while the second term is produced by the 
incident current singularity. This singularity, which is 
itself distinct from the current densities determined by 
Hamilton's equations, nevertheless contributes to the 
derivative of the forward current density along the x 
axis a term f12 exp [ - ( f l+/z)x]  due to twice-scattered 
neutrons whose second scattering occurs within the 
immediate neighborhood of the x axis. The solution 
for U~(x, 0) is therefore 

U,(x,O)=fl2x exp [ -  (fl+/~)x], 

so that u~(xo, O)=~2x O. Substituting this result into (5) 
we obtain the following relationship which involves 
the unknown diffracted reduced current density ua 

° 

PXo= vuadx. (6) 

If we now take the derivative of both sides of (6) with 
respect to x0, keeping in mind the form of v(x,y) from 
equation (4), we obtain the following Volterra equa- 
tion for the reduced neutron current density at point 
(xo,yo) on the surface F: 

ud(Xo)=¢ + lC(x, Xo U (x)dx (7) 

vening surface y=f(x).  It is valid as long as the inter- 
vening surface does not become tangent to the in- 
cident or diffracted beam directions between the en- 
trance and exit points of the beam. As stated in the 
introduction, the derivation was motivated by a desire 
to extend the previous result of Werner & Arrott (1965) 
for fiat surfaces. As such, its most obvious application 
is to the effects of secondary extinction in large neutron 
monochromating crystals employed in the Bragg geom- 
etry. To proceed from a knowledge of the Green 
function to a realistic assessment of the diffracted 
intensity when a finite portion of the surface is illu- 
minated, one must perform an integration of the Green 
function over the outgoing current and incoming 
source positions on the crystal surface. This is carried 
out in detail for the plane-surface Green function by 
Desjardins (1970) and the considerations of that article 
apply here in essentially the same way. 

As far as the more general unsolved problem is con- 
cerned of assessing the effects of secondary extinction 
on small cylindrical crystals of arbitrarily shaped cross 
section totally immersed in a uniform beam, equation (7) 
itself is perhaps of less interest than the general method 
employed in arriving at it. To our knowledge there is 
still no systematic method of treating this latter problem 
short of direct numerical integration of equation (1). 

where the kernel is given by 

K(x, xO)= Jl[2flV' (x°-x)f(x)----~] f(x). 
V (Xo - x ) f  (x) 

]1 is the ordinary Bessel function of first order. It is 
necessary tO remember for computational purposes 
that the actual relation y =f(x) must be written in the 
non-orthogonal coordinate system. 

Formula (7) has been numerically compared with 
the known Green function for the case y = Cx with C =  
constant (plane smface) and found to be in agreement. 

The integral equation (7) determines the diffracted 
current due to a unit source for a given shape of inter- 
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